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Notations
|abc...〉 The tensor product |a〉 ⊗ |b〉 ⊗ |c〉 ⊗ ...
H A complex Hilbert space
V⊗n The n-fold tensor product of V
n The set of natural numbers {1, ..., n}
Pn The Pauli group acting on n qubits
G The gauge group
S The stabilizer group
Lb The bare logical group
Z(G) The center of group G
C(G) The centralizer of group G in Pn

N(G) The normalizer of group G in Pn

6 depending on the context: subspace of a vector space or subgroup
M(S) The check matrix of the stabilizer code S
wt(P) The weight of the operator P
Ke The operator induced by the edge e
W(M) The operator induced by the cycle M
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1 Introduction
In recent years it has been shown that by exploiting the properties of quantum
physics we might be able to build computers that can outperform any computer
from today. Until now this exponentially speed up has been most famously demon-
strated by Peter W. Shor’s factoring algorithm and Lov Grover’s searching algo-
rithm1. However this gain in computing power comes at a price. Since we need
quantum systems to perform quantum computing we have to deal with very deli-
cate structures. The fail-safe storage of information on a quantum computer is of
course indispensable and relies on a good physical implementation. But also on a
more abstract level we can fight errors by introducing error correction schemes. In
fact it has been shown that if the occurrence of errors stays below a certain thresh-
old it is possible to protect the data which makes reliable quantum computing
practicable.

Chapter 2 of this thesis presents the basic ideas behind error correction on
quantum computers and the first example for a error correcting quantum code is
constructed along the way. Chapter 3 introduces the stabilizer formalism which
is a powerful tool to describe the states inside the quantum computer. This leads
to the definition of stabilizer codes which will be generalized to subsystem codes
in chapter 4. In chapter 5 the geometrical subsystem codes are introduced. The
Bacon-Shor code serves as an example to show how subsystem codes can improve
the error correction. Afterwards the topological codes are defined and their prac-
tical advances explained. The topological subsystem codes have good properties
concerning the error detection. One of the main results of this thesis will be that
by mapping topological codes the error detection can be done locally.

2 General quantum error-correction
Before error correction can be discussed it is crucial to know how information
is stored on a quantum computer and therefore how it can be corrupted. Just as
on a classical computer from today we encode our information into bits which
have two states - either 0 or 1. They are referred to as qubits and they will be
written as |0〉 and |1〉. As the Dirac notation indicates these states are elements
of a (2-dimensional) Hilbert space H B 〈|0〉 , |1〉〉C � C2. Therefore not only |0〉
and |1〉 are valid qubits, but also arbitrary linear combinations α |0〉 + β |1〉 with
α, β ∈ C. Since we want to encode more information than just one bit we need
to implement bit strings. This is done by composing the state spaces of the qubits

1Grover’s algorithm ”only” provides a quadratic speed up which is still noticeable for large
databases.
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with the tensor product according to the postulates of quantum mechanics. For
example the bit string 010 is realized by the state |010〉 B |0〉 ⊗ |1〉 ⊗ |0〉 ∈ H⊗3.2

To develop quantum error correcting schemes it is of course essential to know
what kind of errors we are dealing with. This question is easily answered in the
classical case, where the only type of error is the flip of one or several bits in a
bit string. But qubits have more inner structure than classical bits. Since they
are elements of a quantum mechanical system every operation that is allowed
by quantum mechanics is a candidate for an error. These quantum operations
- also called quantum channels - are completely positive trace preserving linear
mappings acting on the density operator of the system we encode our information
in. For simplicity we will only consider errors described by actions of the Pauli
group Pn which is generated by the the Pauli operators acting on n qubits and an
overall phase:3

Pn = {γP1 ⊗ ... ⊗ Pn | γ ∈ {±1,±i}, Pi ∈ {I, X,Y,Z}} (2.1)

The Pauli operators can be represented by the matrices from figure 1.

I =

[
1 0
0 1

]
X =

[
0 1
1 0

]

Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]

Figure 1: The identity and the three Pauli matrices

The weight wt(P) of a Pauli group element P is the number qubits P acts
on non-trivially i.e. as X, Y or Z. One can easily check that all single qubit
Pauli operators either commute or anti-commute. Thus we have [P, P′] = 0 or
{P, P′} = 0 for all P, P′ ∈ Pn.

If we think of |0〉 and |1〉 as the standard base vectors of C2 then the action of
X and Z on the basis states |0〉 and |1〉 is:

X |0〉 = |1〉 Z |0〉 = |0〉
X |1〉 = |0〉 Z |1〉 = − |1〉

This is why we will refer to X as bit-flip error and to Z as phase-flip error.
Since a qubit has more inner structure than a classical bit we have to deal with

some difficulties which at first sight seem to make the task of error correction
2We will from now on only useH to refer to an n-fold tensor product of 2-dimensional Hilbert

spaces i.e. the state space of n qubits.
3We will often only consider X and Z since Y = iXZ.
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impossible. We will illustrate these problems while at the same time construct the
first example for a quantum code which protects a single qubit against errors.

The key idea behind encoding data to protect it against errors is to add redun-
dancy. A simple example would be a so called repetition code which just takes the
information and makes several copies. Classically we can encode the bit 0 into
000 and the bit 1 into 111. If only one bit-flip occurred we can still reconstruct
the original bit string by majority voting e.g. 010 would be corrected to 000. The
following theorem shows that this can not be done with qubits.

Theorem 2.1 (No-cloning theorem). There is no quantum operation that takes a
state |ψ〉 ⊗ |s〉 to |ψ〉 ⊗ |ψ〉 for all states |ψ〉 where |s〉 is some normalized standard
pure state.

Proof. Suppose there is a unitary U which provides us the desired mapping

U (|ψ〉 ⊗ |s〉) = |ψ〉 ⊗ |ψ〉

U (|φ〉 ⊗ |s〉) = |φ〉 ⊗ |φ〉

Taking the inner product of these two equations gives us

〈ψ | φ〉 = (〈ψ| ⊗ 〈s|)U†U(|φ〉 ⊗ |s〉) = (〈ψ| ⊗ 〈ψ|)(|φ〉 ⊗ |φ〉) = (〈ψ | φ〉)2

But from this follows that 〈ψ | φ〉 ∈ {0, 1}. Thus |ψ〉 and |φ〉 are either orthogonal
or identical. �

Therefore we can not apply this method directly to some qubit |ψ〉 = α |0〉 +

β |1〉 because there is in general no way to encode it into the state |ψ〉⊗3. And to
make things even worse there is a second obstacle which has to do with another
intrinsic feature of quantum mechanics: Since the recovery of the initial state
depends on what error happened we need to make a measurement. But in quantum
mechanics such a measurement disturbs our state and we might loose our encoded
information.

As it turns out we are still able construct a code which protects against single
qubit flips. Let us assume we have a single qubit which is either in the state |0〉
or |1〉 and two other qubits in the |0〉 state which are ancilla qubits. There exists
a unitary evolution U (see figure 2) which has the following effect on this 3-qubit
state:

U(|x〉 ⊗ |0〉 ⊗ |0〉) = U(|x〉 ⊗ |x〉 ⊗ |x〉) (2.2)

where x ∈ {0, 1}. Since U is linear we can map α |0〉 + β |1〉 to α |000〉 + β |111〉
and thereby avoid the limitations given by theorem 2.1.
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Figure 2: The quantum circuit for encoding the state α |0〉+ β |1〉 into the encoded
state α |000〉 + β |111〉 by introducing two ancilla states. The unitary evolution U
is realized by two CNOT gates.

To detect on which qubit an error occurred we define the following projection
operators:

P0 = |000〉 〈000| + |111〉 〈111| (2.3)
P1 = |100〉 〈100| + |011〉 〈011| (2.4)
P2 = |010〉 〈010| + |101〉 〈101| (2.5)
P3 = |001〉 〈001| + |110〉 〈110| (2.6)

The projector P0 is measured with probability one if no error happened and
Pi for i = 1, 2, 3 is measured with probability one if the i-th qubit was flipped. It
is important that each measurement always tells us exactly which error happened
and that after the measurement we still have the exact same state as before. Such
a measurement is called a syndrome measurement and the measurement result is
called the error syndrome. Knowing the error syndrome we can do a recovery
operation by flipping the according qubit back and thereby recover our original
encoded state.

A phase flip error takes a qubit α |0〉 + β |1〉 to α |0〉 − β |1〉. If we choose
α = β = 1

√
2

than these two states behave under the action of Z just as |0〉 and |1〉
do under the action of X. These states are denoted |+〉 and |−〉. By performing
a base change and following the same strategy as for the bit-flip code we can
construct a code which protects against single phase-flip errors.

Since a overall phase has no physical meaning and Y = iXZ we can now
correct X-, Y- and Z-errors.

To protect the encoded qubit against both types of errors we simply concate-
nate both codes and get the Shor code which encodes a single qubit into 9 physical
qubits to protect it against bit flip and phase flip errors. The codewords of the Shor
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code are the following:

|0〉 B
(|000〉 + |111〉)(|000〉 + |111〉)(|000〉 + |111〉)

2
√

2
(2.7)

|1〉 B
(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)

2
√

2
(2.8)

The states |0〉 and |1〉 are the logical states of the code i.e. the qubit string
before the encoding. Note that because quantum codes rely on the formalism of
quantum mechanics they will always be linear. Therefore the code space4 C of
the Shor-Code is given by C = 〈|0〉, |1〉〉C.

A nice property of the Shor code is that we can see from the states how error
correction works in detail: There is an inner layer which comes from the 3-bit
flip code and an outer layer from the 3-bit phase flip code. In the inner layer
single qubit flip errors are corrected by majority vote within each set of three. For
example if in one of the three blocks the second bit flips we correct:

|010〉 ± |101〉 → |000〉 ± |111〉 (2.9)

The outer layer does the same majority vote with respect to the signs. Assume
that the sign in the second block flipped. Then the state

(|000〉 + |111〉)(|000〉 − |111〉)(|000〉 + |111〉)

2
√

2
(2.10)

is corrected to

(|000〉 + |111〉)(|000〉 + |111〉)(|000〉 + |111〉)

2
√

2
. (2.11)

Both corrections are independent. Therefore the encoded qubit is protected from
single bit and phase flips at the same time.

We will now see that only being able to correct errors from the Pauli group is
not a restriction. Since we are now dealing with continuous states there might be
continuous changes of the relative phase and not only phase-flips. Let us assume
for example that we are starting with a single qubit state |ψ〉 = α |0〉 + β |1〉 and
after some error happened our state has an additional relative phase: E |ψ〉 =

α |0〉+ eiδβ |1〉. To correct this error we might suspect that we would have to get to
know eiδ up to infinite precision which is a practically impossible task.

Fortunately the Pauli matrices and the identity matrix span C2×2 and thus we
can decompose an error as follows:

E |ψ〉 = (e0I + e1X + e2Y + e3Z) |ψ〉 with ei ∈ C (2.12)
4The vector space of all possible encoded states.

8



Measuring the error syndrome collapses this superposition into either |ψ〉,
X |ψ〉, Y |ψ〉 or Z |ψ〉 and our initial state |ψ〉 can be recovered by applying the
appropriate inversion operation. Thus we only need to correct X and Z errors on
each qubit to recover our initial state since Y = iXZ and a global phase shift has
no physical effect.

3 The stabilzer formalism
In this chapter we will introduce an alternative description of quantum codes based
on the stabilizer formalism. In more complicated codes the states of the code
space may become quite complex and unpleasant to deal with since the number
of coefficients grows exponentially in the number of qubits. Instead of bothering
with the states fromH directly we rely on the use of group theory to describe them
and in particular on actions of the Pauli group on the state space of the qubitsH .
We will from now on always assume that we are dealing with n physical qubits
i.e. the qubits we will encode our data on.

Let P be an operator from Pn. The set of all states which are invariant under
the action of P

VP B {|ψ〉 ∈ H | P |ψ〉 = |ψ〉} (3.1)

is a subspace of H . Equivalently we can think of it as the eigenspace to the
eigenvalue +1 of P.

For example for n = 3 the operator Z1Z2 stabilizes the space

〈|00x〉 , |11x〉 | x ∈ {0, 1}〉C. (3.2)

To stay within the formalism of group action, which allows us to analyze the
action of a whole group on a vector space, this should be thought of as the sub-
space stabilized by the group generated by P namely 〈P〉. This can be taken further
by introducing new generators into the so called stabilizer group S. The stabilizer
group of the previous example can be extended by introducing the operator Z2Z3.
The stabilizer group becomes

S = 〈Z1Z2,Z2Z3〉 = {I,Z1Z2,Z2Z3,Z1Z3} (3.3)

and the stabilized vector space is reduced to

VS B 〈|000〉 , |111〉〉C. (3.4)

The interesting result here is that we obtained the code space of the 3-qubit
bit-flip code from the previous section. This means that we are able to describe
the code space C with the help of the stabilizer group S.
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To see how we can also describe the error detection from the bit-flip code over
the stabilizer elements we assume that our system is in one of the stabilizer states,
say |000〉. Now a single bit-flip error occurs on the first qubit, i.e. a X1 operator
acts on the state. The resulting state |100〉 then is a −1 eigenstate of Z1Z2 but it still
is in the +1 eigenspace of Z2Z3. This comes from the fact that X1 anti-commutes
with Z1Z2 but commutes with Z2Z3. Hence measuring the stabilizer generators is
equivalent to do parity checks (see table 1).

(Z1Z2,Z2Z3) Type of X-error
(1, 1) no error

(−1, 1) error on the first qubit
(−1,−1) error on the second qubit
(1,−1) error on the third qubit

Table 1: Possible results of the syndrome measurement for the bit-flip code

This procedure is similar to the error detection for the bit-flip code because
measuring the generators of the stabilizers gives us the error syndrome for a sin-
gle qubit-flip. Note that measuring the product of both stabilizers also does not
give us any information about the coefficients of the state.

The stabilizer formulation is not only possible for the simple qubit-flip code
but for a wide range of quantum error correcting codes. The main strategy stays
the same: We introduce a stabilizer group S and regard the stabilized subspace VS
as our code space. If an error occurs which anti-commutes with some of the sta-
bilizer generators then our state is taken to the −1 eigenspace of these generators.
Measuring the stabilizer generators S i then gives us a distinctive error syndrome
mi ∈ {±1} from which we can deduce the type of error. Recovery can then be done
by applying the according inverse operation.

Properties of stabilizer groups

Before we investigate further how error detection and correction works in detail
we will first have a look at some theory regarding the stabilizer group S. From
what we have seen so far it is not clear if any subgroup of Pn qualifies to be a sta-
bilizer group. We also need to know how the choice of stabilizer generators effects
the properties of the code such as the number of qubits which can be encoded and
against what errors it protects our encoded data.

Let us first analyze how the choice of S effects the stabilized vector space
VS. Because we are interested in encoding information in VS we want VS to be
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non-trivial. A necessary and sufficient condition for this is given in the following
theorem:

Theorem 3.1. For a group S ≤ Pn to stabilize a non-trivial vector space it has to
be abelian and −I can not be one of its elements.

Proof. Assume there are two non-commuting elements A and B in S then we
have:

|ψ〉 = AB |ψ〉 = −BA |ψ〉 = − |ψ〉 (3.5)

From this follows |ψ〉 = 0 and VS = {0}.
If −I ∈ S a similar argument holds because we get the equality:

−I |ψ〉 = |ψ〉 (3.6)

�

It is easy to see that therefore ±iI < S as well. We also get the following
corollary.

Corollary 3.2. All elements of S square to the identity I. Therefore they have
eigenvalues ±1.

At this point it is convenient to introduce the so called symplectic notation,
because it allows us to prove some following theorems with the help of linear
algebra. The main observation is that multiplication in the Pauli group can be
described by the addition of exponents for each Xi and Zi. Thus we can use the
vector space Z2n

2 to describe multiplications in Pn.5

Definition 3.3. Let r : Pn → Z2n
2 be a function that maps an operator P on a

row-vector v by setting the j-th entry of v to 1 if P acts on the j-th qubit as X and
setting the n+j-th entry of v to 1 if P acts on the j-th qubit as Z. A presence of a 1
on both sides indicates that P acts as Y and a 0 that P acts as the identity.

For example if n = 4 and we take X1Y2Z3 ∈ P4 then

r(X1Y2Z3) = (1, 1, 0, 0 | 0, 1, 1, 0). (3.7)

The mapping r is a homomorphism of groups6 with ker(r) = 〈iI〉, thus r(P) does
not contain any information about the multiplicative factor of P. If we have a set of
operators {P1, ..., Pl} ⊆ Pn then we will call these operators linearly independent if
{r(P1), ..., r(Pl)} is a linearly independent set of vectors. The mapping r establishes
a close correspondence between stabilizer groups and subspaces of Z2n

2 .
With the symplectic notation there is an easy way to check whether a set of

generators for a stabilizer group is independent or not.
5Z2 denotes the field with two elements.
6When thinking of Z2n

2 as an additive group.
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Lemma 3.4. Let S 1, ..., S r be the generators of a stabilizer group S. Then the
operators S 1, ..., S r are independent if and only if r(S 1), ..., r(S r) are linearly in-
dependent vectors.

Proof. We proof the contrapositive. Assume that r(S 1), ..., r(S r) are linearly de-
pendent. Then there are coefficients α1, ..., αr−1 ∈ Z2 such that

r(S r) =
∑
i∈r−1

αi · r(S i)

This is equivalent to saying that
∏

i∈r S αi
i equals S r modulo some element from

the kernel of r|S. Since ker(r|S) = {I} we have

S r =
∏
i∈r−1

S αi
i

which shows that S 1, ..., S r are dependent. �

The symplectic notation can also be used to check if two elements of Pn com-
mute. This is done by a symplectic inner product defined by the following matrix:

Λ B

[
0 I
I 0

]
(3.8)

Where the off-diagonals are n × n identity matrices. Two elements of the Pauli
group P and P′ commute if and only if they act as different elements of {X,Y,Z}
on an even number of qubits. This condition is easily seen to be equivalent to

r(P)Λr(P′)tr = 0. (3.9)

A useful way of presenting the generators of a stabilizer code is the so called check
matrix which is defined over the mapping r.

Definition 3.5. Suppose S is generated by S 1, ..., S r. Then the rows of the check
matrix M(S) are defined as the rows of Z2n

2 the stabilizer generators are mapped
to, i.e.

M(S)i,− B r(S i) for all i ∈ r. (3.10)

Thus we have M(S) ∈ Zr×2n
2 .

Lemma 3.6. Let S be a subgroup of Pn generated by linearly independent gen-
erators S 1, ..., S r. Then for all i ∈ r there exists a P ∈ Pn such that PS iP† = −S i

and PS jP† = S j for all j , i.
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Proof. We want P to be an element of Pn which commutes with all generators of
S except for S i which can be expressed as

r(S j)Λr(P) = δi j for all j ∈ r

We can now use the mapping r and the check matrix M(S) to show that such an
operator P exists since r(P)tr must be a solution of the following system of linear
equations:

M(S)Λx = ei

where x ∈ Z2n
2 . Since the generators are linearly independent M(S) has full rank

and M(S)Λ is invertible. Because r is surjective there exists a P ∈ Pn such that

r(P) = (M(S)Λ)−1ei

which concludes the proof. �

Lemma 3.6 provides the tool to prove that for each independent generator,
which is added to the stabilizer S, the dimension of the stabilized space VS is
divided by 2. This result is intuitively clear since each stabilizer has a +1 and
-1 eigenspace which cuts the total Hilbert space into two subspaces of the same
dimension.

Theorem 3.7. Let S be a stabilizer group operating on n qubits and with inde-
pendent generators S 1, ..., S r. The vector space stabilized by S has the dimension
2n−r.

Proof. Let x = (x1, ..., xr)tr be an element of Zr
2. We define the operator

Px B

∏
j∈r(I + (−1)x jS j)

2r (3.11)

Notice that P(0,...,0) is the projector onto VS. We have shown in lemma 3.6 that
there exists a Tx ∈ Pn such that

TxP(0,...,0)T †x = Px (3.12)

Therefore the dimension of the +1-eigenspace of Px is the same for all x ∈ Zr
2

namely dim(VS). It is also easy to see that all these eigenspaces are orthogonal
and since ∑

x∈Zr
2

Px =
1
2r

∑
x∈Zr

2

∏
j∈r

(I + (−1)x jS j) =
1
2r

∑
x∈Zr

2

I = I (3.13)

we can decompose the 2n-dimensional Hilbert space H into 2r orthogonal vector
spaces of the dimension dim(VS). Hence dim(VS) = 2n−r. �
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Stabilizer codes

From theorem 3.7 follows that the code space is isomorphic to a Hilbert space with
dimension 2n−r or equivalently to the Hilbert space of n − r qubits. The qubits of
this isomorphic Hilbert space are called virtual qubits since they have no physical
representation. Nevertheless they play an important role since they are be used to
carry the encoded information. From now on we will use the letter k to refer to
the number of virtual qubits i.e. the number of qubits we can encode. We can also
find operators in Pn which act as Pauli X and Z on virtual qubits. They are called
logical operators. The following theorem is taken from [10] without a proof:

Theorem 3.8. Let S be a stabilizer group in Pn and S 1, ..., S r independent gen-
erators of S. Then there are independent operators X1, ..., Xn−r, Z1, ...,Zn−r ∈ Pn

such that

C(S) = 〈iI, S 1, ..., S r, X1, ..., Xn−r,Z1, ...,Zn−r〉 (3.14)

and X
2
i = Z

2
j = I for all i, j ∈ n − r. Furthermore they satisfy [S l, Xi] = [S l,Z j] =

0 and [Xi,Z j] = δi, j for all l ∈ r and i, j ∈ n − r.

Theorem 3.8 has some interesting implications concerning the Hilbert space
of the physical qubits. Because {S 1, ..., S r,Z1, ...,Zn−r} is a complete set of com-
muting observables there is a basis of eigenvectors forH :

S i |s1, ..., sr, z1, ..., zn−r〉 = (−1)si |s1, ..., sr, z1, ..., zn−r〉 (3.15)
Zi |s1, ..., sr, z1, ..., zn−r〉 = (−1)zi |s1, ..., sr, z1, ..., zn−r〉 (3.16)

Note that the si and zi are not the eigenvalues which could be ±1 but the according
exponents of −1. This notation is convenient since

Z |0〉 = (−1)0 |0〉 (3.17)

and

Z |1〉 = (−1)1 |1〉 . (3.18)

This shows that the physical qubit space H can be decomposed into a tensor
product of the 2n−r-dimensional logical space HL and the 2r-dimensional space
Hsyn in which the information about the syndrome measurement is kept.

We want to use the states stabilized by S to encode information. Therefore the
states of the code space C have the following form:

|0, ..., 0, z1, ..., zn−r〉 C |z1, ..., zn−r〉 (3.19)
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on which the logical operators act in the following way:

Xi |z1, ..., zn−r〉 = |z1, ..., zi + 1 mod 2, ..., zn−r〉 (3.20)
Zi |z1, ..., zn−r〉 = (−1)zi |z1, ..., zn−r〉 (3.21)

What we have accomplished is to split up the Hilbert space of physical qubits
into a direct sum of different subspaces where C is the subspace of H which is
stabilized by a stabilizer group S. The strategy to protect the encoded information
is that errors take the encoded state from C into another subspace. We will discuss
the general error detection and correction schemes in the following chapter for a
more general class of quantum codes but we can already give a indicator for the
error correction qualities of stabilizer codes called distance. The distance tells us
how many single qubit changes are needed to get from one codeword to another.
This notion can be captured with the help of the logical operators:

Definition 3.9. The distance of a stabilizer code is defined as the minimum weight
of all elements of C(S) − S i.e.

d B min
P∈C(S)−S

wt(P). (3.22)

The Shor code in the stabilizer formalism

In chapter 2 we introduced the Shor code which encodes a single qubit into 9
physical qubits and protects it against single qubit errors. We will now translate
this code in the stabilizer formalism. From theorem 3.7 follows that the stabilizer
formulation of the Shor code should have 8 generators. In fact we can find a set of
independent stabilizer generators by thinking back to the parity checks of the bit-
and phase-flip codes. The parity of the bits is fixed by operators of the form ZiZi+1

whereas the phases are fixed by the stabilizers X1X2X3X4X5X6 and X4X5X6X7X8X9.
Having the states of the Shor code in mind (see eqations (2.7) and (2.8)) we

observe that the operator X1X2X3X4X5X6X7X8X9 takes the logical state |1〉 to −|1〉
and leaves |0〉 invariant. Consequently

Z B X1X2X3X4X5X6X7X8X9 (3.23)

is the logical Z operator. The logical X operator is given by

X B Z1Z2Z3Z4Z5Z6Z7Z8Z9. (3.24)

Notice that the logical operators have nothing in common with the X and Z op-
erators on the physical qubits. In other codes the logical operators might have an
even more complicated form.

We will from now on refer to stabilizer codes which encode k logical qubits
onto n physical qubits with distance d as [[n, k, d]]-codes. For example the Shor
code is a [[9, 1, 3]]-code.
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Z ⊗ Z ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I
I ⊗ Z ⊗ Z ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I

I ⊗ I ⊗ I ⊗ Z ⊗ Z ⊗ I ⊗ I ⊗ I ⊗ I
I ⊗ I ⊗ I ⊗ I ⊗ Z ⊗ Z ⊗ I ⊗ I ⊗ I

I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ Z ⊗ Z ⊗ I
I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ Z ⊗ Z

X ⊗ X ⊗ X ⊗ X ⊗ X ⊗ X ⊗ I ⊗ I ⊗ I
I ⊗ I ⊗ I ⊗ X ⊗ X ⊗ X ⊗ X ⊗ X ⊗ X

Figure 3: The eight generators for the Shor code. The first three pairs of generators
check the parity of the the qubits in the three blocks and the last two check the
phase between the three blocks.

4 Subsystem codes
The notion of stabilizer codes can be extended into a more general form called
subsystem codes. In this chapter we will first discuss the defining properties of the
underlying formalism and how it relates to the stabilizer codes from the preceding
chapter. Later we will discuss how these new codes can be constructed.

Definition of subsystem codes

Until now we decomposed the Hilbert space of the qubits into a direct sum H =

C⊕C⊥ where C is the code space in which the information is encoded. Subsystem
codes do not use the complete subspace C. Instead the code space has a subsystem
structure i.e. C is a tensor product of subspaces or subsystems7 which we will call
A and B for the rest of this chapter. The complete physical Hilbert space H then
looks as follows:

H = A ⊗ B ⊕C⊥ (4.1)

We will only use the subsystem A to store information whereas errors on B will
be ignored and therefore contribute gauge degrees of freedom. One might argue if
it would not suffice to take a smaller code space to obtain the same result, but we
will see that this approach brings with it some advantages not only for the theory
but also for practical realizations.

7Hence the name.
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The decomposition in (4.1) is the most general case to analyze. If we wanted
to store information somewhere else within H we would have to decompose A
further into A⊗A′ or A⊕A′ and store data only in A. Then we can define B′ B A′⊗B
respectively C⊥ B A′⊗B⊕C⊥ and we obtain the same structure forH as in (4.1).

The mathematical description of the code space C is equivalent to the one of
stabilizer codes i.e. in subsystem codes we also have a stabilizer group S such
that

C = {|ψ〉 ∈ H | S |ψ〉 = |ψ〉 for all S ∈ S}. (4.2)

To the definition of a subsystem code also belong two other groups acting on the
code space which we call the logical group Lb and the gauge group G. Both
groups are subgroups of Pn and S will always be a subgroup of G (see the section
on the construction of subsystem codes). Moreover do the operators of Lb and G
commute.

[G, L] = 0 for all G ∈ G, L ∈ Lb (4.3)

This property of Lb and G is sufficient to induce the desired tensor structure on
C (see [5]). That means that we will define the subsystems A and B such that
operators from Lb only act non-trivially on A and operators from G only act non-
trivially on B. The logical group Lb is equivalent to the logical group known
from stabilizer codes. That means that Lb is generated by operators which act
as Pauli X and Z on the virtual qubits in A. The novelty in subsystem codes in
contrast to stabilizer codes is the gauge group G. The actions of the gauge group
on C are also called gauge transformations and since G is a group they induce an
equivalence relation on C. Two states |ψ〉 , |ψ′〉 ∈ C will be regarded as equivalent
|ψ′〉 ∼ |ψ〉 if there is a G ∈ G such that |ψ′〉 = G |ψ〉. Since equivalent states carry
by definition the same information we can expand our notion of logical operators.
Suppose G ∈ G and P ∈ Lb then the operator P ⊗ G manipulates our data in the
same way as P. Hence P and P ⊗ G are in some sense also equivalent. We will
refer to operators from Lb which do not perform any gauge transformations as
bare logical operators. Accordingly products of operators from Lb and G − {I}
will be called dressed logical operators.

Construction of subsystem codes

Following [4] we construct a subsystem code by choosing 2n elements of Pn

called Xi and Zi with i ∈ n. As the notation indicates we want them to follow
the same commutation rules as Xi and Zi

[Xi,Z j] = 2XiZ jδi, j. (4.4)
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Keep in mind that this is the only restriction we set. In particular the primed op-
erators may act non-trivially on several physical qubits. However we can imagine
them acting on virtual qubits. To construct the stabilizer group we choose r < n
and define S B {Z′1, ...,Z

′
r}. This group is abelian and does not contain −I. Hence

by theorem 3.1 we can use it as a stabilizer group which defines a code space with
n − r = k-qubits (see theorem 3.7). We will from now on refer to Z′i as S i for all
i ∈ r. It is easy to see that the centralizer of S is

C(S) = 〈iI, S 1, ..., S r, X′r+1, ..., X
′
n,Zr+1, ...,Zn〉 (4.5)

The gauge group G should leave the code space C invariant. Hence we put iI and
all elements of S into G. Then we pick a number q which defines the number of
gauge qubits or equivalently the number of gauge degrees of freedom. Of course
it only makes sense to choose q such that r + q < n. Thus the gauge group G can
be generated by the stabilizer group S, q pairs of primed X and Z operators X′j and
Z′j with j > r and the phase iI. We can w.l.o.g. choose the pairs Xi and Zi with i
from r + 1 to r + q and get

G B 〈iI,S, X′r+1, ..., X
′
r+q,Z

′
r+1, ...,Z

′
r+q〉. (4.6)

The group of bare logical operators Lb is generated by the left n − r − q = k pairs
of X and Z operators.

Lb = 〈X′r+q+1, ..., X
′
n,Z

′
r+q+1, ...,Z

′
n〉 (4.7)

Since we have [G,Lb] = 0 we have split up C into a tensor product of the
2k dimensional subsystem A and the 2q dimensional subsystem B. This result is
obvious if we think back to the virtual qubits. What we essentially did was taking
the logical operators of q virtual qubits to define the gauge transformations and
kept the other k qubits as logical qubits. Note that the non-trivial bare operators are
the elements of C(G)−G whereas the dressed operators are elements of C(S)−G
and that the stabilizer group S is up to phase factors the center of the gauge group,
i.e. Z(G) B G ∩ C(G) = 〈iI,S〉. Hence the subsystem code is already uniquely
defined by G.

Error detection and correction

Since we do not care about errors on the subsystem B we have to reconsider the
error correcting conditions. Then for an error to be correctable we would want it
to do only gauge transformations on our state. Suppose P is the projector onto the
code space. Then the error correcting condition is given by

PEaEbP = IA ⊗Ga,b
B for all a,b (4.8)
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Note that the gauge transformation may depend on the error. In [6] Kribs et al.
proved that this condition is necessary for error correction and in [7] Nielsen and
Poulin proved that this condition is also sufficient.

Theorem 4.1. Let G be a S be the stabilizer subgroup and C ≤ H the stabilized
code space. Suppose {Ei | i ∈ J} is a set of operators from Pn. Then {Ei | i ∈ J} is a
correctable set of errors for the subsystem code G if and only if E†i E j < C(S) − G
for all i, j ∈ J.

Proof. Suppose P is the projector fromH onto C. For some fixed i, j ∈ J we have
either E†i E j ∈ Pn − C(S), E†i E j ∈ C(S) − G or E†i E j ∈ G.
Consider the first case. There must be a S 1 ∈ S which anti-commutes with E†i E j.
We can find elements from S such that S = 〈S 1, ..., S r〉. This allows us to write P
as

P =

∏r
l=1(I + S l)

2r (4.9)

from which follows that

PE†i E jP = P(I − S 1)E†i E j

∏r
l=2(I + S l)

2r . (4.10)

Since (I + S 1)(I − S 1) = 0 we get P(I − S 1) = 0 and therefore PE†i E jP = 0 which
satisfies the error correction conditions.
For the second case we observe that

C(S) − G � L − {I} × G. (4.11)

Hence E†i E j = LA ⊗ G with some non-trivial operator on A LA. Therfore we can
not correct errors from C(S) − G.
Finally for E†i E j ∈ G the error is only a gauge transformation which only takes us
to an equivalent state. �

Theorem 4.1 divides all possible errors from Pn into three categories:

• EaEb ∈ Pn −C(S) - These errors anti-commute with at least one element of
the stabilizer.

• EaEb ∈ C(S) − G - Errors from this group commute with all stabilizers
(EaEb ∈ C(S)) and act non-trivially on A (EaEb < G).

• EaEb ∈ G - These errors only perform gauge transformations.
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The definition for the distance for subsystem codes is similar to the one given in
3.9 except that not only elements of S are not harmful to states of the code space
but also elements of G only map to states in C which we consider as equivalent.
Thus the distance for subsystem codes is defined as

d B min
P∈C(S)−G

wt(P) (4.12)

We will refer to a subsystem code that encodes k logical qubits into n physical
qubits with distance d as a [[n, k, q, d]] subsystem code.

Every subsystem code can be turned into a stabilizer code by extending the
stabilizer group with Z operators acting on the gauge qubits8 and thereby stabilize
all gauge bits. The reverse is true as well i.e. turning a [[n, k, d]] stabilizer code
into a [[n, k, q, d]] subsystem code. Though it is not always clear what the largest
possible value for q is.

The Shor-subsystem code

Let us have a look at the Shor-code again. The parity checks defined by the first
6 stabilizer generators (see figure 3) can be united into two stabilizers: We are

Z ⊗ Z ⊗ I ⊗ Z ⊗ Z ⊗ I ⊗ Z ⊗ Z ⊗ I
I ⊗ Z ⊗ Z ⊗ I ⊗ Z ⊗ Z ⊗ I ⊗ Z ⊗ Z

X ⊗ X ⊗ X ⊗ X ⊗ X ⊗ X ⊗ I ⊗ I ⊗ I
I ⊗ I ⊗ I ⊗ X ⊗ X ⊗ X ⊗ X ⊗ X ⊗ X

Figure 4: The reduced set of stabilizers for the Shor code.

now checking the parity of 6 physical qubits at once which leads to less syndrome
measurements. By doing this our stabilized code space has become bigger. Before
we only had 1 qubit which lived in a 2-dimensional Hilbert space. By reducing
the number of stabilizer generators the stabilized space is now 25-dimensional
which means that there are 5 virtual qubits. But by doing so there are now errors
which can not be detected anymore and thus not all of the qubits are protected
against errors. We can find 4 pairs of anti-commuting operators (see figure 4)
which generate the errors which now can not be detected anymore. These are the
generators of the gauge group which operates on 4 gauge qubits leaving one qubit
which is protected just as in the known stabilizer formulation.

8Or equivalently the X operators.
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I ⊗ Z ⊗ Z ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I
I ⊗ I ⊗ X ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ X

I ⊗ I ⊗ I ⊗ I ⊗ Z ⊗ Z ⊗ I ⊗ I ⊗ I
I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ X ⊗ I ⊗ I ⊗ X

Z ⊗ Z ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I
X ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ X ⊗ I ⊗ I

I ⊗ I ⊗ I ⊗ Z ⊗ Z ⊗ I ⊗ I ⊗ I ⊗ I
I ⊗ I ⊗ I ⊗ X ⊗ I ⊗ I ⊗ X ⊗ I ⊗ I

Figure 5: Gauge operators of the [[9, 1, 4, 3]] Shor-code

Subsystem codes compared to stabilizer codes

In conclusion does the generalization into subsystem codes provide an advan-
tage over stabilizer codes. By introducing the gauge transformations we archived
passive fault tolerance. We have also seen that we can reduce the number of sta-
bilizer which decreases the complexity of the active error correction procedure.
Another advantage follows from the fact that the stabilizers can be deconstructed
into gauge operators. This leads to the possibility of doing a syndrome measure-
ment by only measuring gauge operators. This will be further analyzed in the next
chapter.

5 Geometrical subystem codes
We continue with codes where we envision the qubits in a certain position in a
space. This approach has two advantages: First the operators of the code can be
visualized which makes it easier and more intuitive to work with. The second
advantage is that the codes get a more physical interpretation since the operators
correspond to interactions between neighboring qubits. Therefore locality will be-
come a new property we can analyze. We say a set of operators acts spatially local
if each operator acts only on a constant number of qubits located within constant
distance from each other. A good code should have local stabilizer generators
to simplify the syndrome measurement and non-local logical operators because
non-local interactions are less likely to happen.

In this chapter we will consider two examples for geometrical codes. At first
we will consider a code which is related to the Shor code called the Bacon-Shor
code. It is a subsystem code defined on a square lattice with qubits on each site.

21



Afterwards we will define the family of topological subsystem codes. We will
introduce a way to construct these codes which was provided in [2] and explicitly
construct the square-octagon code as an example. At the end of this chapter we
will provide a theorem from which follows that syndrome measurement using
only local operators is always possible.

The Bacon-Shor code

The Bacon-Shor code is a [[n2, 1, (n − 1)2, n]] subsystem code defined on a n × n-
lattice of qubits. It was introduced by Dave Bacon in [12] and will be referred to as
C(n)

BS . The code space is stabilized by operators which act as X on two neighboring
rows and as Z on two neighboring columns of qubits. More formally we have a
stabilzer group

S B 〈Xi,−Xi+1,−; Z−,iZ−,i+1 | i ∈ n − 1〉 (5.1)

where Pi,− means that the operator acts as P on each qubit in the i-th row of
the lattice (equivalently P−,i for columns). Note that all stabilizers commute and
−I < S so that we have a proper stabilizer group. We have r = 2(n−1) independent
generators ofS and therefore the code space C is 2n2−2(n−1) = 2(n−1)2+1 dimensional.
Thus we have (n − 1)2 + 1 virtual qubits.

We define X B X1,− and Z B Z−,1 as the logical operators for one of the logical
qubits. The gauge group G only acts on the left (n − 1)2 qubits and is generated
by two-qubit operators of the form X j,iX j+1,i respectively Zi, jZi, j+1 for all i ∈ n and
j ∈ n − 1. Note that all of the gauge group operators commute with the logical
operators for the encoded qubit. The codespace is decomposed into C = A ⊗ B
where A is two-dimensional and B is 2(n−1)2

-dimensional.
From the choice of the logical operators for A follows that the distance of

the code is n. The error recovery in A works in the same way as introduced in
section 4. We can measure Xi,−Xi+1,− to correct phase-flip errors on up to

⌊
n
2

⌋
rows

respectively Z−,iZ−,i+1 to correct bit-flip errors on up to
⌊

n
2

⌋
columns. This seems

like a lot of effort for the protection of just one qubit but note that only the parity of
the physical qubits is relevant since errors on two qubits in one row (for Z errors)
or one column (for X errors) are elements of the gauge group G. These errors only
affect the virtual gauge qubits from B and not the protected qubit from A.

But now we have a problem concerning the active error correction: The sta-
bilizer generators which have to be measured grow with the size of the lattice.
This leads to a practical problem since it is harder to do measurements with many
qubits involved. Fortunately each stabilizer is composed of gauge operators

Xi,−Xi+1,− =
⊗

k∈n

Xi,kXi+1,k (5.2)
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Figure 6: The Bacon Shor code C(8)
BS encoding a single qubit into 64 physical

qubits on a square lattice.

and

Z−, jZ−, j+1 =
⊗

k∈n

Zk, jZk, j+1. (5.3)

Since all of these factors commute they can all be measured separately. The prod-
uct of all ’gauge measurements’ then gives us the eigenvalue of the stabilizer
generator. The measurement becomes easier because the gauge generators only
act non-trivially on two qubits. Thus we will only need one |0〉 or |+〉 ancillary
state to realize a syndrome measurement (see figure 7).9

Figure 7: (a) Circuit for measuring the gauge operator X j,kX j+1,k. (b) Circuit for
measuring the gauge operator Zk, jZk, j+1.

9Figure taken from [9].
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Topological subsystem codes

2D topological subsystem codes are a family of codes defined on a lattice which is
embedded into a plane or a torus. That means that the qubits are either located on
a confined 2-dimensional space or that the space is periodic in both directions (in
loose terms: if we start at a qubit on the lattice and walk in one direction we will
arrive at the same qubit we started at). All topological subsystem codes should
have the following properties:

• The stabilizer group S has spatially local generators which can be identified
with closed homologically trivial loops on the lattice.

• The syndrome measurement can be done by measuring the eigenvalues of
operators acting solely on two qubits.

• The non-trivial undetectable bare errors can be identified with closed homo-
logically non-trivial loops on the lattice.

Note that from the last property follows that the non-trivial undetectable errors
are non-local and grow with the size of the lattice. This gives us an extra advan-
tage since non-local errors occur with a far smaller probability than local errors.
But the main advantage of topological subsystem codes over topological stabilizer
codes is the second property. The syndrome measurement of all known stabilizer
codes involves at least four-qubit measurements which are more difficult to real-
ize.

Instead of dealing with the lattice of the code directly we will use graphs to
define topological codes. The locations of the qubits will be referred to as sites
and the set of all sites of a code is called V . All sites are connected via edges
which can connect either two or three sites. The set of all edges E is therefore
the union of E2 and E3 which denote the set of edges connecting two and three
sites. This means we are dealing with a 3-valent hypergraph. The edges also have
a property: They can be of either X-,Y- or Z-type. We will have the following
restrictions on the edges:

• Each site has exactly three incident edges,

• Any pair of edges share at most one site,

• There are no sites shared by two triangles.

Each edge gives rise to an operator. If we have an edge e = (u, v) ∈ E2 connecting
two sites u and v and e is of X-type then its corresponding operator is Ke B
XuXv (equivalently for Y- and Z-type). These two-qubit interactions are called
link operators. The following theorem gives a necessary and sufficient condition
on when two of those operators commute.
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Lemma 5.1. Suppose we have two edges e, f ∈ E2. Then their according link
operators commute if and only if they do not share exactly one end point.

Proof. If they do not share any end-points the operators act on different qubits
and thereby commute. If they act on the same two qubits than the operators are
identical which also lets them commute. If they only share one end-point u then
by construction the act as different Pauli-operators on u and therefore they anti-
commute. �

Edges connecting three qubits give rise to the triangle operators. Suppose the
Z-type edge e = (u, v,w) connects the sites u,v and w then the triangle operator
is ZuZvZw (equivalently for Y- and Z-type). If we assume that X- ,Y- and Z-errors
occur with the same probability10 then types of the link and triangle operators are
specified up to a permutation. Thus without loss of generality we can set all edges
connecting three sites to be of Z-type and the edges connecting two sites to be of
X- respectively Y-type.

Theorem 5.2. Suppose e, f ∈ E are two edges. Then for their respective operators
Ke and K f we have

KeK f = (−1)η(e, f )K f Ke (5.4)

with

η(e, f ) =

0, if e and f share an even amount of sites or e, f ∈ E3,

1, otherwise.
(5.5)

Proof. The case where e, f ∈ E2 follows directly from lemma 5.1. Suppose e, f ∈
E3 then they are both Z-type and therefore Ke and K f commute. If e is in E2 and
f in E3 then they share by construction of the graph either one or no sites. If they
share one site u ∈ V than Ke acts on the according qubit as either Xu or Yu and
K f as Zu. Thus Ke and K f anti-commute. If they do not share any sites at all they
trivially commute. �

We can use the link and triangle operators as components of bigger operators
by considering sets of edges. The subsets which will turn out to be useful are
cycles on the graph.

Definition 5.3. A subset of edges M ⊆ E is called a cycle if and only if each site
of the lattice has an even number of incident edges from M.

10These types of quantum channels are called depolarizing channels.
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We will denote the set of all edges of a closed loop with M which is a subset
of E. These closed loops give rise to the so called loop operators. If M is a closed
loop of edges then W(M) is the corresponding loop operator. One reason why
we consider loop operators is that we have a general commutation rule similar to
theorem 5.1.

Theorem 5.4. Suppose e ∈ E is an edge and M ⊆ E is a cycle. Their according
operators commute if and only if e is not a triangle contained in M, i.e.

[W(M),Ke] = 0↔ e < M ∩ E3 (5.6)

Proof. Suppose e ∈ E2 then we must consider the case where e is an element of
M or it shares a site with edges laying in M (if not Ke and W(M) would act on
different qubits). If e ∈ M then let u, v ∈ V be the sites connected by e. Both
have by definition 5.3 an even amount of edges incident from M from which we
can conclude that Ke and W(M) commute. The same argument holds for the case
where e incides on a site u ∈ V which also has incident edges from M.
Now let e be in E3. From the restrictions we put on the graph it follows that if
e is not in M than Ke and W(M) do not share any qubits. If on the other hand
e ∈ M then each site of e has an odd amount of incident edges from M which
are not equal to e. Thus for the odd amount of edges connected by e we have an
odd amount of incident edges from M which each give rise to an operator anti-
commuting with Ke and therefore Ke anti-commutes with W(M). �

Corollary 5.5. Suppose M,M′ ⊆ E are two cycles then

W(M)W(M′) = (−1)∆(M,M′)W(M′)W(M) (5.7)

where ∆(M,M′) B |M ∩M′ ∩ E3| is the number of triangles shared by M and M′.

Let Gloop B {W(M) | M ⊆ E is a cycle} be the group of all loop operators.
Instead of dealing with individual links we will define a topological code over
the cycles of the graph. Nevertheless the actual gauge group G of the code is the
group of all edge operators. G can always be reconstructed from Gloop using the
following identity:

G = C(G) (5.8)

We also have

S = Gloop ∩ C(Gloop) = Z(Gloop). (5.9)

The advantage of using Gloop will become clear when we explicitly construct a
topological code. The bare logical operators as well as the stabilizers then can be
easily seen by considering the commutation rules given above.
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To transform the hypergraph (E,V) into an ordinary graph (Ẽ, Ṽ) we can sim-
ply set Ṽ B V . Furthermore every link e ∈ E2 can be put into Ẽ. Triangle edges
have to be split up into a triple of links, i.e. if we have an edge e = (u, v,w) ∈ E3

then Ẽ has elements (u, v), (v,w) and (w, u). To make a distinction between edges
in Ẽ which arise from links and triangles we will refer to the first type as solid
links and to the latter as dashed links.

The square-octagon code

Let us look at an example for a 3-valent graph that suffices the restraints which
were given in the preceding section. In figure 8 we can see such a hypergraph.
Because of the alignment of the sites and edges the code which is defined by this
hypergraph is called square-octagon code.

Figure 8: The 3-valent hypergraph of the square-octagon code. The graph has
three types of edges: The links which can be of X- or Y-type (green and red solid
lines) and triangles which we chose as Z-type operators (blue trangles with dashed
lines). Each site of the graph has two incident links and one incident triangle.

To understand the codes properties let us first analyze the loops in the hy-
pergraph. There are essentially two different kinds: Those which give rise to
operators that have spatially local support and those that ’grow’ with the size of
the lattice. The existence of these cycles can be explained by the topology of
the lattice on which we locate the sites of the graph: Recall that we have the
open-boundary condition and therefore we can imagine the graph being located
on the surface of a torus. Thus we can construct loops which can be tightened to
a point (homologically trivial loops) and those who are located around the torus
and therefore can not be contracted (homologically non-trivial loops).
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Let us first consider the homologically trivial ones. They can be associated
with the elementary squares and octagons of the lattice. Each octagon contributes
two basis cycles called A and C (see figure 9). The cycle A consists of the 8 link
operators that form the boundary of an octagon which does not have any sites in
it. The cycle B is made up of 12 links and 8 triangles around the octagon. Each
square contributes two basic loops B and D, where D consists of 4 links that form
a square and B consists of 4 triangles and 6 links.

Figure 9: The four elementary cycles of the hypergraph. Edges contributing to the
cycles are colored while others are grayed out.

The homologically non-trivial loops can be seen in figure 10. The basis cycles
which correspond to the vertical loops on the lattice are called Z1 and Z2 and those
which correspond to horizontal loops are called X1 and X2. Note that despite the
suggestive notation these are not operators but cycles in the cycle space of the
hypergraph.

The cycles A and D do not contain any triangles from which follows with
corollary 5.5 that W(A) and W(D) will commute with all other loop operators, i.e.
W(A),W(D) ∈ C(Gloop) ∩Gloop. By inspection it is also easy to see that the cycles
B and C share either zero or two triangles with all other basis cycles. Again we
can conclude with corollary 5.5 that W(B) and W(C) commute with all the other
loop operators.

The cycles X1, X2, Z1 and Z2 do not share an even amount of triangles with all
cycles. As the notation indicates do W(X1) and W(Z1) anti-commute since X1 and
Z1 share one triangle. The same is true for W(X2) and W(Z2). All other pairings
of the cycles X1, X2, Z1 and Z2 share no triangles which again leads to commut-
ing operators. Because A, B, C, D and X1, X2, Z1, Z2 form basis of the cycle
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Figure 10: The basis cycles of the hypergraph which correspond to homologically
non-trivial loops on the lattice. The black circles mark edges that are shared by
two cycles. Note that X1 and Z1 (respectively X2 and Z2) share one triangle and
therefore give rise to anti-commuting operators W(X1) and W(Z1) while X1 and Z2

(respectively X2 and Z1) only share one link operator.

space we can conclude that the stabilizer group S is generated by the operators
corresponding to A, B, C and D.

S = 〈W(A),W(B),W(C),W(D)〉 (5.10)

The following theorem enables us to do a syndrome measurement by only
measuring elements of the gauge group i.e. link operators.

Theorem 5.6 (Syndrome measurement with link operators). The eigenstate of a
stabilizer S ∈ S can be measured by a set of link operators if and only if S can be
written as a product of these link operators

S = Km · · ·K1 (5.11)

and K j commutes with the ordered product of all preceding link operators, i.e.

[K j,K j−1 · · ·K1] = 0 for all j ∈ {2, ...,m} (5.12)

Proof. Let us first proof that the conditions (5.11) and (5.12) are necessary. For
doing so we analyze how such an adaptive eigenvalue measurement works in gen-
eral. Assume that we already measured generators K1, ...,K j with measurement
results m1, ...,m j ∈ {±1}. Then

P j B
I + m jK j

2
(5.13)
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is the projector into the m j-eigenspace of K j and can therefore be used to describe
the measurement of K j. Now define

R j B P j · · · P1 (5.14)

as the operator which describes the ordered measurements of the sequence K1 to
K j for the configuration of outcomes m B (m1, ...,m j). We say that this procedure
simulates the eigenvalue measurement of S if there exists a function σ : {±1}l →
{±1} such that

RlS = S Rl = σ(m)Rl for all m ∈ {±1}l (5.15)

This means that the state after the measurements of the Ki must be an eigenvector
of S with eigenvalue σ(m).
What we have to prove is that this is only possible if S can be decomposed as in
(5.11) while satisfying (5.12). To do so we define are abelian subgroups of Pn in
the following way: First we set S0 B {I}. For j ∈ {1, ..., l} the groups are defined
inductively by

S j B 〈miKi,S
′
j−1〉 (5.16)

where S′j is defined as the set of all elements of S j which commute with K j+1, i.e.

S′j B {P ∈ S j | [P,K j+1] = 0} (5.17)

From (5.15) follows that σ(m)S ∈ Sm which allows us to write

σ(m)S = (mlKl)αl · S l−1 (5.18)

for some S l−1 ∈ Sl−1 and αl ∈ {0, 1}. Since S′j ⊆ S j we can apply this method
again until we arrive at the decomposition

σ(m)S = (mlKl)αl · · · (m1K1)α1 (5.19)

where αl, ..., α1 ∈ {0, 1}. By construction we have (m j−1K j−1)α j−1 · · · (m1K1)α1 ∈ S′j

for all j ∈ l. Thus we get [K j,K
α j−1

j−1 · · ·K
α1
1 ] = 0. By omitting all factors with

αi = 0 we obtain the equations (5.11) and (5.12).
Now let us proof that (5.11) and (5.12) are also sufficient. For doing so we

proof by induction over j that after measuring K j our state is an eigenvector of
S j B K j · · ·K1 with eigenvalue σ j = m j · · ·m1. Suppose j = 2 then equation
(5.12) implies that K1 and K2 commute and therefore their eigenvalues m1 and
m2 can be measured simultaneously. From equation (5.11) we get S = K2K1.
Therefore the eigenvalue of S is σ = m2 · m1 which proves the basis case. For
the inductive step assume that the eigenvalue of S j can be measured as described
above. From (5.12) follows that K j+1 commutes with S j. Hence their eigenvalues
can be measured independently. After measuring K j the eigenvalue of S j is σ j+1 =

m j+1σ j. �
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An example for syndrome extraction by measuring link operators

Let us consider the square-octagon code CS O as an example. Recall that the sta-
bilizers of CS O were loop operators generated by W(A), W(B), W(C), and W(D)
which can be seen in figure 9. For W(D) we can check the conditions straight-
forward. We first take all X-type link operators K1 and K3

11 which obviously
commute among each other and also commute with the Y-type operators K2 and
K4 because they share an even amount of qubits with them. Hence we can decom-
pose W(D) into

W(D) = K4K2K3K1 (5.20)

which suffices equations (5.11) and (5.12). Note that the decomposition is not
unique. The decomposition of W(A) follows completely analogous:

W(A) = K8K6K4K2K7K5K3K1 (5.21)

Actually the syndrome measurement can be done in only two steps in both cases
since we can measure all X- and Y-type operators at once.

For the stabilizer W(B) the definition of the cycles helps us to find decomposi-
tions that suffice (5.12): Because every site has an odd number of incident edges
and the corresponding link operators anti-commute we can take the link operators
that make up the stabilizer and group them after their respective type (X, Y or Z).
Hence W(B) can be measured by first measuring the dashed links because each of
those commute with every other link operator from W(B) and second all solid link
operators. The decomposition has the following form:

W(B) =

 ∏
e∈EX∩C

Ke

 ·
 ∏

e∈EZ∩C

Ke

 (5.22)

The decomposition for W(C) follows in a similar way. We use the fact that
after measuring all dashed links all left solid link operators commute and thus we
can write:

W(C) =

 ∏
e∈EX∩C

Ke

 ·
 ∏

e∈EY∩C

Ke

 ·
 ∏

e∈EZ∩C

Ke

 (5.23)

Again we can see that the syndrome extraction can be done in a two way mea-
surement because after the measurement of the dashed link operators all solid link
operators commute.

11Link operators are numbered beginning at the top and continuing clockwise
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The conditions of theorem 5.6 would be easily fulfilled if we knew that the
gauge operators were all of one type since then they would trivially commute. In
[1] was proven by the use of so-called Majorana fermions that stabilizer codes
can be mapped such that the stabilizer group becomes a direct product of X- and
Z-type operators. Here we extend that proof to subsystem codes and use a more
direct way without the use of Majorana fermions.

Theorem 5.7 (Code mapping). Every [[n, k, q, d]] subsystem code can be mapped
onto a [[4n, 2k, 2q, 2d]] subsystem code. The gauge group G̃ of the new code
is a direct product of G̃(X) and G̃(Z) which only contain X- respectively Z-type
operators. This mapping also preserves the geometric locality of a code up to a
constant factor.

Proof. First define the mapping σ : Pn → Z4n
2 :

Let be P be an element of Pn.

1. If P acts as X on the jth qubit then σ(P) j = σ(P) j+n = 1

2. If P acts as Y on the jth qubit then σ(P) j = σ(P) j+2n = 1

3. If P acts as Z on the jth qubit then σ(P) j = σ(P) j+3n = 1

All other entries are set to 0. If we think of Z4n
2 as divided into 4 blocks of length n

then the jth entry of block 1 marks if P acts non-trivial on the jth qubit and blocks
2, 3 and 4 if P acts as X, Y or Z.
The other two mappings we need for the proof are

τX : Z4n
2 → P4n, (c1, ..., c4n)tr 7→

∏
j∈4n

Xc j

j (5.24)

and

τZ : Z4n
2 → P4n, (c1, ..., c4n)tr 7→

∏
j∈4n

Zc j

j . (5.25)

Furthermore we define the vector space

D B 〈e j + e j+n + e j+2n + e j+3n C d j | j ∈ n〉 6 Z4n
2 (5.26)

where e j denotes the jth standard base vector of Z4n
2 .

Let S̃ and G̃ denote the stabilizer respectively the gauge group. To get the
generators of S̃ and G̃ we map each generator of S and G under τX ◦ σ and add
the images of D under τX and τZ, i.e.
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G̃ B 〈(τX ◦ σ)(G), (τZ ◦ σ)(G), τX(D), τZ(D)〉 (5.27)

S̃ B 〈(τX ◦ σ)(S ), (τZ ◦ σ)(S ), τX(D), τZ(D)〉 (5.28)

The set of non-trivial logical operators of the new code is defined as

L̃ B C(S̃) − G̃. (5.29)

Let us proof first of all that following this procedure we end up with a proper
subsystem code. Let P and P′ be operators from Pn.

Claim. P and P′ commute if and only if σ(P) · σ(P′) = 0.

To see why this is the case let us first assume that [P, P′] = 0. Then there is an
even number of qubits on which they act with different elements from {X,Y,Z}. If
we take the inner product σ(P) ·σ(P′) then entries where P and P′ act as the same
Pauli cancel each other out leaving only an even amount of ones from block one.
Therefore σ(P) ·σ(P′) is equal to 0. If [P, P′] , 0 then there will be consequently
an odd amount of anti-commuting operations and thus with a similar argument as
above σ(P) · σ(P′) , 0.

Moreover if σ(P) · σ(P′) = 0 then (τX ◦ σ)(P) and (τZ ◦ σ)(P′) have even
overlap and therefore they commute. This shows that commuting generators still
commute after being mapped onto X- respectively Z-type operators. Furthermore
do the elements of D have zero inner product with all vectors of the image of σ.
Thus we can conclude that operators in S̃ commute with operators in G̃ and that
up to phase factors we have Z(G̃) = S̃. From the construction of S̃ and the fact
that it is an abelian group it follows that −I < S̃.
Consequently S̃ and G̃ define a subsystem code.

Obviously our new code encodes on ñ = 4n physical qubits. To show that the
other parameters of the code also have the desired properties we need to show the
following claim.

Claim. Linearly independent operators stay linearly independent after the map-
ping and all operators from τX/Z(D) are linearly independent from all operators
of the image of τX/Z ◦ σ.

We proof the contrapositive. For this we take operators P0, ..., Pm fromPn such
that σ(P0), ..., σ(Pm) are linearly dependent. There is a subset of indices I ⊆ m
such that

σ(P0) =
∑
i∈I

σ(Pi) (5.30)
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Because ker(σ) = 〈iI〉 we can conclude

P0 ∼
∏
i∈I

Pi (5.31)

from which immediately follows that

r(P0) =
∑
i∈I

r(Pi) (5.32)

and therefore P0, ..., Pm are linearly dependent. The rest follows from the fact that
the d j are not in Im(σ).

This allows us to simply count the generators in the new code: Since every
generator from the old code was mapped onto two generators in the new code
and we added 2n independent generators to the stabilizer we get r̃ = 2r + 2n and
q̃ = 2q. Consequently the new code encodes k̃ = ñ − r̃ − q̃ = 2k qubits.

We can also see that the gauge group G̃ can be represented as the direct prod-
uct of two subgroups, G̃ = G̃(X) · G̃(Z), where G̃(X) and G̃(Z) contain only X-
respectively Z-type elements of Pn. Of course the same is true for S̃ as well.
For the distance of the new code we show:

Claim. The minimum weight of the logical operators in the new code has doubled.

First let us proof that a non-trivial logical operator L from C(S)−G is mapped
onto a non-trivial logical operator L̃ in L̃. We set w.l.o.g. L̃ B (τX ◦ σ)(L) and
show that L̃ is in C(S̃) − G̃.12

It has been already shown that L̃ commutes with every element in S̃. We show
that L̃ < G̃ by contradiction and assume that

L̃ ∈ G̃(X) = 〈(τX ◦ σ)(Gi), τX(d j) | i ∈ r + q, j ∈ n〉 (5.33)

which is eqivalent to

σ(L) ∈ 〈σ(Gi), d j | i ∈ r + q, j ∈ n〉. (5.34)

Thus there is a G ∈ G and a d ∈ D such that σ(L) = σ(G) + d ⇔ d = σ(L) +σ(G).
The vector d can not be 0 because then we would have L ∈ G. But also for d , 0
we get a contradiction since G and L can only act as either X,Y or Z on each qubit.
Therefore L̃ must be an element of C(S̃) − G̃. Note that by mapping L we double
the weight since for each qubit that L acts on non-trivially L̃ acts on two: Namely
one in block 1 and one in block 2, 3 or 4.

12The argument for P̃ = (τZ ◦ σ)(P) is the same.
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Suppose L̃ is a minimum weight logical operator from L̃. Then w.l.o.g. it is a
pure X-type operator which means that there must be a L ∈ L and a v ∈ D such
that L̃ = τX(σ(L) + v). The vector σ(L) has at least 2d non-zero entries and adding
v does not change this number. Therefore L̃ has at least the weight 2d.

We can think of this mapping as splitting up one qubit into four qubits. If S is
generated by geometrically local operators then these are mapped onto operators
which themselves still act locally. Therefore the new code is geometrically local
as well. �

Remark 5.8. Note that τX and τZ are homomorphisms while σ is not, for example
we have for n = 1

σ(XYZ) = σ(iI) = 0 , e1 + e2 + e3 + e4 = σ(X) · σ(Y) · σ(Z). (5.35)

However we have

σ(P1P2) − σ(P1)σ(P2) ∈ D for all P1, P2 ∈ Pn. (5.36)

Therefore σ : Pn → Z4n
2 /D is a homomorphism.13

It is of course important that the locality of the code is preserved because it is
our goal to do local measurements. The following theorem provides exactly this.

Corollary 5.9. Every topological subsystem code can be mapped such that the
error syndrome can be extracted by measuring gauge group elements.

Proof. We need to show that for all generators S̃ i of S̃ there exist G̃1, ..., G̃m such
that

S̃ = G̃m · · · G̃1 (5.37)

and

[G̃ j, G̃ j−1 · · · G̃1] = 0 for all j ∈ m. (5.38)

Equation (5.38) is easily seen to be true since S̃ is a direct product of S̃(X) and
S̃(Z). To show that (5.37) holds:

S̃ i = (τX ◦ σ)(S i) (5.39)
= (τX ◦ σ)(Km · · ·K1) (5.40)

= τX

∑
i∈m

σ(Ki) + d

 (5.41)

=
∏
i∈m

(τX ◦ σ)(Ki) · τX(d) (5.42)

The term in (5.42) is a product of generators of G̃(X) which shows that S̃i can be
decomposed gauge operators. The statement now follows from theorem 5.6. �

13The vector space Z4n
2 /D is the quotient space.
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Mapping of the SO-code

In figure 11 we see how the stabilizers of the SO-code get mapped. Since it is
difficult to visualize all blocks at once we can see how the stabilizers look on each
block. As mentioned in the proof we can think of this mapping as splitting up a
single qubit into four qubits laying next to each other. Therefore the local opera-
tors of the new code stay local in the new code. The blocks are not independent
but they are linked by the elements from τX/Z(D).

Figure 11: The stabilizer generators of the SO-code before and after being
mapped. Note that the mapped elements of the vector space D are not visible
here. They provide parity checks among the corresponding qubits of each block
i.e. the i-th qubit of block 1,2,3 and 4 for all i = 1, ..., n.

6 Conclusion
Subsystem codes provide good properties for active error correction while com-
bining them with passive error avoiding. We have seen how these class of error
correcting codes is constructed and also analyzed how they can protect informa-
tion from being corrupted. It turned out that the syndrome measurement could
be done in a different way than for stabilizer codes - namely by measuring gauge
operators. This property in combination with a geometric interpretation then led
to a simplification of the error detection process.
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We also introduced the topological codes and gave a way to construct them. At
the end we provided a mapping onto subsystem codes which have certain proper-
ties. This allowed us to show that any topological subsystem code can be mapped
such that the error syndrome can be extracted by local gauge measurements.
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7 Appendix

Standard form for stabilizer codes
Suppose we are given a set of generators for a stabilizer group of a code which
encodes k logical qubits on n physical qubits. In general these generators do not
have to be linearly independent. Then the check matrix for this code is given by

M(S) = [M1|M2] (7.1)

which has n − k rows. To bring M(S) into a standard form we will use Gaus-
sian elimination on blocks of M(S). To do this we need to do elementary matrix
operations so we need to check if those can be done while ending up with the
check matrix of an equivalent code. Swapping rows of M(S) is allowed since it
corresponds to reordering the stabilizers. Also swapping of columns can be done
because by doing this we just put the qubits into a different order. Finally we
can also replace a row by adding another row which is equivalent to replace a
generator S i with S iS j where i , j.

The procedure to bring M(S) into standard form works as follows: First by
Gaussian elimination on M1 we bring M(S) into the form:[

I A B C
0 0 D E

]
(7.2)

Where the first block has r rows and the second block n − r rows. Subsequently
we perform a Gaussian elimination on E and obtain: I A1 A2 B C1 C2

0 0 0 D1 I E2

0 0 0 D2 0 0

 (7.3)

Where the the blocks on the right hand side have k + s columns. The first r
generators do not commute with the last s unless D2 = 0. Hence we can disregard
the last s rows. Additionally we may eliminate C1 = 0 by adding rows from below.
Finally our check matrix takes the standard form:[

I A1 A2 B 0 C2

0 0 0 D1 I E2

]
(7.4)

Codes with a check matrix as in (7.4) are in standard form.
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