Hyperbolic and semi-hyperbolic surface codes for quantum storage


We show how a hyperbolic surface code could be used for overhead-efficient quantum storage. We give numerical evidence for a noise threshold of for the -hyperbolic surface code in a phenomenological noise model (as compared with for the toric code). In this code family, parity checks are of weight 4 and 5, while each qubit participates in four different parity checks. We introduce a family of semi-hyperbolic codes that interpolate between the toric code and the -hyperbolic surface code in terms of encoding rate and threshold. We show how these hyperbolic codes outperform the toric code in terms of qubit overhead for a target logical error probability. We show how Dehn twists and lattice code surgery can be used to read and write individual qubits to this quantum storage medium.

Quantum Science and Technology